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Lecture 3 
Multiple flash drums  

and distillation column



Intended Learning Outcomes: 

1. Understand limitation of the single-stage flash column  

2. Analyze the key components of the distillation column.  

3. Write and solve external mass and energy balances for binary distillation column. 

4. Write and solve operating equation for the rectifying and stripping sections. 

5. Calculate the number of stages using the graphical (McCabe-Thiele) approach. 
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Can you assign concentrations for each stream

1. Where do we have the highest purity component 1?
2. Where do we have the highest purity component 2?
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Can you suggest further improvements??
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Further improvements: heat and mass exchange 
between liquid and vapor streams
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Major nomenclature change for multistage 
processes
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Single column design
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Heat management (maintaining temperature)
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Liquid products are desired
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Enriching or 
Rectifying section

Enriching of more 
volatile component 

(MVC)

Stripping sectionMVC is stripped out

xD > z > xB

Analysis in two sections



Operation at each plate
Trays (also known as plates or stages): Where liquid-vapor contact occurs. 

Simplest tray: Sieve tray



Sieve tray



Valve tray to control gas flow rate
Holes are fitted with caps which can move up or down depending on the pressure of vapor and liquid



A few facts about distillation

1. Distillation is derived from Latin word destillare, which means “dripping”. 

2. The term rectification is derived from the latin word, rectefacere, which means “to improve”. 

3. Distillation dates back to at least 1st century A.D.  

4. By 11th century, distillation was used in Italy to make alcoholic beverages in the batch mode.  

5. By 16th century, it was known that separation can be improved by multiple stages, in 
Rectificatorium.  

6. Distillation consumes 25% of the energy in all chemical industry (50% energy related to separation 
process). 

7. Distillation can be extremely energy-intensive when α12 < 1.5 (example, close boiling chemicals 
such as propane/propylene, xylene isomers with α12 close to 1.1)



Mass balances

Eq. 1F = D + B

Usually F, z, xB, xD, and R (R =
L
D ) are given

Fz = DxD + BxB
Eq. 2

QC

QR

Calculate D, B, L

D = F
z − xB

xD − xB
B = F

xD − z
xD − xB

Do you see a similarly to lever rule ??

L = R * D
R = Reflux ratio = L/D



Overall energy balance

FhF + QR + QC = DhD + BhB QC

QR

We need one more equation

V1

QC is heat taken out for condensing V1 to liquid (D+L)

V1hV1
+ QC = (D + L)hD

D + L
QC

V1

V1 = D + L

⇒ QC = − (D + L)(hV1
− hD)

Latent heat of vaporization 

V1hV1
= (D + L)hD − QC



Stage by stage balance: rectifying section
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1. Constant Molar Flow Assumption: Liquid and vapor 
flow rates above the feed do not change from stage to 
stage (assume similar molar volume). 

2. Column pressure is uniform. 

3. Column is well insulated and no heat loss takes place 
from column. 

4. Each stage is an equilibrium stage: streams leaving 
the column are in equilibrium (note that stream arriving 
in the column are not in equilibrium)

y1 = k1x1 k1 = f (T1, P)

y2 = k2x2 k2 = f (T2, P) V
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Overall mass balance

yj = kjxj k3 = f (T3, P) Equilibrium line

Vyj = Lxj−1 + DxD Operating line

yj =
L
V
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D
V
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In  = out steady-state operation (no accumulation)

x0

Phase equilibria



Stage by stage balance: rectifying section
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Stage by stage balance: stripping section
1. CMO assumption: Liquid and vapor flow rates below 

the feed do not change from stage to stage (assume 
similar molar volume). 

2. Column pressure is uniform. 

3. Column is well insulated and no heat loss takes place 
from column. 

4. Each stage is an equilibrium stage: streams leaving 
the column are in equilibrium (note that stream arriving 
in the column are not in equilibrium)

Overall mass balance
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Stage by stage balance: stripping section
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Which one is NOT an equilibrium stage in the following configuration
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27

Which points on the plot represent (x1, y1)
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Which points on the plot represent (xN, yN+1)
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